Classification of Associative Two-Dimensional Algebras

Christopher A. Doherty, Jacob C. Hall, Patrick J. Ledwith, and Rishi S. Mirchandani

Pennsylvania Governor’s School for the Sciences
Dr. Juan Jorge Schäffer, Advisor
Mr. Quang Sack, Teaching Assistant

August 1, 2014
Abstract Algebra

We normally work with a one-dimensional algebra. For example,

\[3 = 3(1) \]
\[10 = 10(1) \]
\[-5 = -5(1) \]

Starting with the unit vector, we can obtain any quantity we are looking for by multiplying by some scalar in \(\mathbb{R} \).
Two-Dimensional Algebras

Consider a negative real number, say -1. We may want x such that $x^2 = -1$.

But our one-dimensional algebra cannot handle this situation. So we use a second dimension in the i direction.

http://pirate.shu.edu/ wachsmut/complex/numbers/graphics/plane.gif
Describing an Algebra

Multiplication tables describe an algebra visually. They are read much like Punnett squares in biology.

Example: The complex number system

\[
\begin{array}{c|cc}
\times & 1 & i \\
\hline
1 & 1 & i \\
i & i & -1 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & v \\
v & v & -u \\
\end{array}
\]
An algebra \mathcal{A} is

- **associative** if and only if $(xy)z = x(yz)$ for all $x, y, z \in \mathcal{A}$
- **commutative** if and only if $xy = yx$ for all $x, y \in \mathcal{A}$
- **unital** if and only if $\exists u \in \mathcal{A} | ux = x$ for all $x \in \mathcal{A}$
- **a division algebra** if and only if for every $x \in \mathcal{A}$ there exists $x' \in \mathcal{A} | xx' = x'x = 1$.

For the purposes of this investigation, we only assume associativity.
Properties of Two-Dimensional Algebras

Any two algebras within a given category may be isomorphic.
Isomorphism

From Greek *iso*, meaning “equal,” and *morphosis*, meaning “to form”

Example: Two isomorphic algebras

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & 0 \\
v & v & 0 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & u \\
v & v & v \\
\end{array}
\]
Isomorphism (continued)

Why are these two algebras isomorphic?

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & 0 \\
v & v & 0 \\
\end{array}
\quad
\begin{array}{c|ccc}
\times & u & w \\
\hline
u & u & u \\
w & w & w \\
\end{array}
\]

Start with the first algebra. Then choose \(w := u + \beta v \).

\[
\begin{align*}
\text{\(uu \)} & \text{ does not change} \\
\text{\(uw = uu + \beta uv = uu = u \)} \\
\text{\(wu = uu + \beta vu = u + \beta v = w \)} \\
\text{\(ww = (u + \beta v)(u + \beta v) = uu + \beta vu = u + \beta v = w \)}
\end{align*}
\]

So there exists a mapping between these two algebras.
The field \mathbb{F} is a one-dimensional, unital, and commutative algebra that includes all the allowable coefficients for our two-dimensional algebras.

We assume the field to be of characteristic 0.

For non-unital algebras, there are no other restrictions on the field.

However, for division algebras, we assume the field to be \mathbb{R}.
A Useful Lemma

Lemma 1.

For an algebra \(A \) there exists \(z \in A^\times \) such that either \(zz = 0 \) or \(zz = z \).

Proof.

Consider any \(u \in A^\times \).

- \(uu \in F \cdot u \). Let \(uu = ru \) for \(r \in F \). If \(r = 0 \), then \(uu = 0 \). Otherwise, define \(v := \frac{1}{r} u \). \(vv = \frac{1}{r^2} uu = \frac{1}{r} u = v \).

- Case 2: \(u \) and \(uu \) are not collinear. Thus \((u, uu)\) is a basis. Suppose \(uuu = \alpha u + \beta uu \) for \(\alpha, \beta \in F \), and choose \(y := uu - \beta u \). Then we have \(yy = \alpha y \). We have now reduced the problem to a form covered by Case 1, for which we have already shown the conclusion holds.
Classifying the Non-unital Algebras

Assume $\exists u \in A \mid uu = u$.

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & \alpha u + \beta v \\
v & \gamma u + \delta v & \\
\end{array}
\]

$u(uv) = u(\alpha u + \beta v) = \alpha uu + \beta uv = \alpha u + \beta(\alpha u + \beta v) = (\alpha + \alpha\beta)u + \beta^2 v$

$\triangleright (uu)v = uv = \alpha u + \beta v$
Classifying the Non-unital Algebras (continued)

By the Associative Law,

$$u(uv) = (uu)v$$

$$(\alpha + \alpha \beta)u + \beta^2 v = \alpha u + \beta v$$

Matching the coefficients gives us a system of equalities:

$$\begin{cases}
\alpha + \alpha \beta = \alpha \\
\beta^2 = \beta
\end{cases} \quad \text{therefore} \quad \begin{cases}
\alpha \beta = 0 \\
\beta(\beta - 1) = 0
\end{cases}$$
The Associative Law requires that

\[
\begin{align*}
\alpha\beta &= 0 \\
\gamma\delta &= 0 \\
\beta(\beta - 1) &= 0 \\
\delta(\delta - 1) &= 0 \\
\alpha(\delta - 1) &= \gamma(\beta - 1)
\end{align*}
\]

Thus there are four cases:

1. \(\beta = \delta = 0 \)
2. \(\beta = 1, \delta = 0 \)
3. \(\beta = 0, \delta = 1 \)
4. \(\beta = \delta = 1 \)
Case 1: $\beta = \delta = 0$

\[
\alpha(\delta - 1) = \gamma(\beta - 1) \implies \gamma = \alpha
\]

\times	u	v
u	u	αu
v	αu	

We can simplify this algebra by assuming $\alpha \neq 0$ and choosing $w := u - \frac{1}{\alpha} v$.

\[
uw = u \left(u - \frac{1}{\alpha} v \right) = u - u = 0
\]

\[
wu = \left(u - \frac{1}{\alpha} v \right) u = u - u = 0
\]
Case 1: $\beta = \delta = 0$ (continued)

Let $ww := \epsilon u + \zeta w$. By the Associative Law,

$$(\epsilon + \zeta w)u = (ww)u = w(wu) = 0 \implies \epsilon = 0$$

and thus $ww = \zeta w$.

- If $\zeta \neq 0$, choose $v' := \frac{1}{\zeta} w$ which gives $v'v' = \frac{1}{\zeta^2} ww = \frac{1}{\zeta} w = v'$. Next, choose $z := u + v'$. If (z, v') is the basis, we obtain a unital case. This is isomorphic to the $\alpha = 0$ case.

\[
\begin{array}{c|c|c}
\times & z & v' \\
\hline
z & z & v' \\
v' & v' & v' \\
\end{array}
\]

- If $\zeta = 0$, we obtain a non-unital case.

\[
\begin{array}{c|c|c}
\times & u & w \\
\hline
u & u & 0 \\
w & 0 & 0 \\
\end{array}
\]
The Five Non-unital Algebras

The algebra we just found is denoted by I. Cases 2, 3, and 4 yield II and III, and the \(\nexists u \in A^\times \mid uu = u \) scenario yields IV and V.

<table>
<thead>
<tr>
<th></th>
<th>uu</th>
<th>uv</th>
<th>vu</th>
<th>vv</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>u</td>
<td>v</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>u</td>
<td>0</td>
<td>v</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>u</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Some important observations:

- I, IV, and V are commutative while II and III are not.
- None of these five algebras are isomorphic. Hence, we have a complete classification of the non-unital algebras.
Unital Algebras

An algebra is unital if there exists a *unity* u such that $uv = v = vu$ for all v. A unital algebra is *divisional* if and only if there exists y for each x such that $yx = u$.

Lemma 2.

*For all unital algebras A where u is the unity,\[
\exists w \in A \setminus F u \mid ww = ru \text{ for suitable } r \in F.\]*

Proof.

If (u, v) is the basis, choose

- $r := \alpha + \frac{1}{4} \beta^2$
- $w := v - \frac{1}{2} \beta v$
- $vv := \alpha u + \beta v$

Then verify that $ww = ru$. □
Unital Algebras (continued)

Theorem 3.

Consider a unital algebra A with unity u and a vector v such that $vv = ru$. A is a division algebra if and only if $r \neq s^2 \ \forall s \in F$.

Proof.

We choose $x := \alpha u + \beta v \in A^\times$.

1. If $r \neq s^2$, then $\alpha^2 - r\beta^2 \neq 0$. Choose $y := \frac{1}{\alpha^2 - r\beta^2}(\alpha u - \beta v)$. Then $xy = yx = u$ and so the algebra is a division algebra.

2. If A is divisional, y (the inverse of x) exists for all α and β, and thus $\alpha^2 - r\beta^2 \neq 0 \implies r \neq (\alpha/\beta)^2$. \qed
For the division algebras, we specify that the field is \mathbb{R}.

1. $r = 0$: not a division algebra

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & v \\
v & v & 0
\end{array}
\]

2. $r = 1$: not a division algebra

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & v \\
v & v & u
\end{array}
\]

3. $r = -1$: a division algebra

\[
\begin{array}{c|cc}
\times & u & v \\
\hline
u & u & v \\
v & v & -u
\end{array}
\]
The Eight Two-Dimensional Associative Algebras

Theorem 4 (Main result).

Every two-dimensional associative algebra is either equivalent or isomorphic to one of the eight algebras specified below.

<table>
<thead>
<tr>
<th></th>
<th>(uu)</th>
<th>(uv)</th>
<th>(vu)</th>
<th>(vv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(u)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>(u)</td>
<td>(v)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>(u)</td>
<td>0</td>
<td>(v)</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(u)</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VI</td>
<td>(u)</td>
<td>(v)</td>
<td>(v)</td>
<td>0</td>
</tr>
<tr>
<td>VII</td>
<td>(u)</td>
<td>(v)</td>
<td>(v)</td>
<td>(u)</td>
</tr>
<tr>
<td>VIII</td>
<td>(u)</td>
<td>(v)</td>
<td>(v)</td>
<td>(-u)</td>
</tr>
</tbody>
</table>
Further Research

Retracting any one of the fundamental assumptions made in this investigation changes the problem significantly.

Future research could entail classification of algebras that are

- of three or more dimensions
- nonassociative
- over a field not of characteristic 0

Additionally, there is more work to be done with the two-dimensional associative division algebras.
Acknowledgments

We extend our sincere gratitude to

- Dr. Barry Luokkala, Director of the PGSS
- Our host, Carnegie Mellon University
- All PGSS donors, including:
 - Pennsylvania Department of Education
 - PGSS Campaign, Inc.
 - EQT
 - AT&T
 - Alcoa
 - PPG
 - Teva Pharmaceuticals
 - Westinghouse
- Dr. Russ Walker, Discrete Math Professor
- Quang Sack, Teaching Assistant
- Dr. Juan Jorge Schäffer, Project Advisor
Thank you. Any questions?
Images
http://pirate.shu.edu/ wachsmut/complex/numbers/graphics/plane.gif
http://i.imgur.com/F6N5EYC.png